Hopf-Galois module structure of some non-normal extensions of number fields

George Prestidge

School of Computing and Mathematics Keele University Research supervised by Dr. Paul Truman

Hopf algebras and Galois module theory conference 26^{th} May 2021

Some historical results

Theorem (Noether, 1932)

If L/K is a tamely ramified Galois extension of number fields with Galois group G, then \mathcal{O}_L is a locally free \mathcal{O}_K G-module (of rank one).

Remark

In general, criteria for global freeness are more delicate.

- Del Corso and Rossi (2013) determined criteria for global freeness for L/K a tame Kummer extension (see the following slide)
- Truman (2020) studied a non-normal analogue of the result of Del Corso and Rossi for tamely ramified extensions of prime degree using Hopf-Galois theory

Aim

Our main aim is to generalise the work of Truman to certain families of tamely ramified extensions of prime-power degree which have a unique almost classical Hopf-Galois structure.

The result of Del Corso and Rossi

Let L/K be a tamely ramified Kummer extension of exponent m and degree N.

Definition

For $\alpha_1, ..., \alpha_r$ a set of Kummer generators for L/K, define $a_i = \alpha_i^m$, and write $\boldsymbol{\alpha}$ for $(\alpha_1, ..., \alpha_r)$ and \boldsymbol{a} for $(a_1, ..., a_r)$. Similarly if $i_1, ..., i_r \in \mathbb{N}$ write \boldsymbol{i} for $(i_1, ..., i_r)$.

Theorem

The extension L/K has a normal integral basis iff there exists a set of integral Kummer generators α such that the following conditions hold.

- The ideals $\mathcal{B}_{i} = \prod_{\mathfrak{p}} \mathfrak{p}^{\lfloor \frac{v_{\mathfrak{p}}(a^{i})}{m} \rfloor}$ are principal for all i.
- The congruence $\sum_{i} \frac{\alpha^{i}}{x_{i}} \equiv 0 \pmod{N}$ holds for some $x_{i} \in \mathcal{O}_{K}$ with $\mathcal{B}_{i} = x_{i}\mathcal{O}_{K}$.

Further, when this is the case, the integer $\omega = \frac{1}{N} \sum_{i} \frac{\alpha^{i}}{x_{i}}$ generates \mathcal{O}_{L} over $\mathcal{O}_{K}G$.

Hopf-Galois module theory

Now let L/K be a finite extension of number fields and suppose L/K is Hopf-Galois for some Hopf algebra H. Using Hopf-Galois module theory, we have a Hopf-Galois analogue of the normal basis theorem.

Theorem

L is a free H-module (of rank one).

Definition

We can define the associated order of \mathcal{O}_L in H as $\mathcal{A}_H := \{h \in H | h.x \in \mathcal{O}_L \text{ for all } x \in \mathcal{O}_L\}.$

Hopf-Galois module theory is concerned with the following properties of $\mathcal{A}_{\mathcal{H}}.$

- The structure of \mathcal{A}_H as a ring
- The structure of \mathcal{O}_L as an \mathcal{A}_H -module
 - ▶ i.e. whether \mathcal{O}_L is locally or globally free as an \mathcal{A}_H -module

(日) (同) (日) (日)

Setup for the extension

- Let K be a number field
- Let *p* be an odd prime
- Let ζ be a primitive p^{th} root of unity
- Assume that p is unramified in K
 - Note that this implies that $\zeta \notin K$
- Let $L = K(\alpha_1, ..., \alpha_r)$ where each $a_i := \alpha_i^p \in K$
- To ensure that the extension has degree p^r we require that
 - $a_i \in K \setminus K^p$ for all i
 - $\alpha_i \notin K(\alpha_j)$ for $i \neq j$
- Let E be the Galois closure of L/K
- It can be shown that $E = L(\zeta)$

Properties of the Galois group

• Let
$$G = Gal(E/K)$$
 and let $T = Gal(E/L)$

• We have $G = \langle \sigma_1, ..., \sigma_r, \tau \rangle$ and $T = \langle \tau \rangle$ where $\sigma_i(\alpha_i) = \zeta \alpha_i, \sigma_i(\alpha_j) = \alpha_j, \sigma_i(\zeta) = \zeta, \tau(\alpha_i) = \alpha_i$ and $\tau(\zeta) = \zeta^d$ for d some primitive root modulo p

• $G \cong S \rtimes T$ with $S := \langle \sigma_1, ..., \sigma_r \rangle$ the unique Sylow *p*-subgroup of *G*

Lemma

Since Gal(E/L) (the group T) has a normal complement in G (namely S), the extension L/K is almost classically Galois.

Remark

Since S is the unique Sylow p-subgroup of G, the extension L/K has a unique almost classical Hopf-Galois structure.

Remark

For r = 2, this is the only Hopf-Galois structure admitted by the extension.

Properties of the Hopf-Galois structure

- The subgroup of Perm(G/T) which gives rise to the unique almost classical Hopf-Galois structure is λ(S)
- The corresponding Hopf algebra is $H = E[\lambda(S)]^G$
- H has a K-basis consisting of mutually orthogonal idempotents

$$e_{\mathbf{i}} = \frac{1}{p^r} \prod_{k=1}^r \sum_{n=0}^{p-1} \zeta^{-i_k n} \lambda(\sigma_k)^n$$

- These give rise to an isomorphism of K-algebras, $H \cong K^{p^r}$
- H acts on L in the following way

$$e_{i}(\boldsymbol{\alpha^{j}}) = egin{cases} \boldsymbol{\alpha^{j}} & ext{if } i = j \ 0 & ext{otherwise} \end{cases}$$

Determining criteria for the extension to be tamely ramified

Lemma

L/K is tame iff all α_i can be chosen to satisfy $a_i := \alpha_i^p \equiv 1 \pmod{p^2 \mathcal{O}_K}$.

Proof.

- Firstly, we apply the standard result that L/K is tame iff the sub-extensions $K(\alpha_i)/K$ are tame for all *i*.
- Secondly, we apply a result of Truman (2020) that $K(\alpha_i)/K$ is tame iff α_i can be chosen to satisfy $a_i := \alpha_i^p \equiv 1 \pmod{p^2 \mathcal{O}_K}$.

Remark

Henceforth, we will assume that these congruences hold.

(4) (3) (4) (4) (4)

Determining local integral bases

For prime ideals $\mathfrak{p} \nmid p\mathcal{O}_{\mathcal{K}}$ we study each sub-extension and use properties of arithmetic disjointness and obtain that a local integral basis is given by

For prime ideals $\mathfrak{p}|\mathcal{pO}_{\mathcal{K}}$ we use a different approach

- Define $F := K(\zeta)$
- E/F is a Galois extension and has local integral basis $\{\prod_{k=1}^{r} (\frac{\alpha_k-1}{\zeta-1})^{i_k} | 0 \le i_k \le p-1\}$
- F/K is a cyclotomic extension and has local integral basis $\{1, \zeta, ..., \zeta^{p-2}\}$
- It follows that an $\mathcal{O}_{\mathcal{K},\mathfrak{p}}$ -basis of $\mathcal{O}_{\mathcal{E},\mathfrak{p}}$ is

$$\left\{\prod_{k=1}^{r} (\frac{\alpha_k-1}{\zeta-1})^{i_k} \zeta^j | 0 \le i_k \le p-1, 0 \le j \le p-2\right\}$$

Determining local integral bases

- Since the extension *E/L* is tamely ramified, the trace map is surjective at the level of rings of integers i.e. *Tr_{E/L}(O_{E,p}) = O_{L,p}*
- Hence $\mathcal{O}_{L,\mathfrak{p}}$ is spanned over $\mathcal{O}_{K,\mathfrak{p}}$ by the traces of the integral basis elements
- To simplify calculations when taking the trace, we remove the powers of ζ − 1 from the denominator as follows. We use the division algorithm to write i₁ + ... + i_r = Q(p − 1) + R with 0 ≤ R p−1</sup> ~ p, the O_{K,p}-basis of O_{E,p} becomes (up to units)

$$\left\{\frac{(\alpha_1-1)^{i_1}...(\alpha_r-1)^{i_r}}{p^{Q+1}}(1-\zeta)^{p-1-R}\zeta^j|0\leq i_k\leq p-1, 0\leq j\leq p-2\right\}$$

• After taking the trace and resolving linear dependencies we find that a local integral basis is given by

$$\left\{rac{(lpha_1-1)^{i_1}...(lpha_r-1)^{i_r}}{p^Q}|0\leq i_k\leq p-1
ight\}$$

Determining the associated order

Definition

Let \mathcal{M} denote the unique maximal order in H. For \mathfrak{p} a prime ideal of \mathcal{O}_K , let $\mathcal{M}_\mathfrak{p}$ denote the unique maximal order in $H_\mathfrak{p}$.

Proposition (Truman, 2011)

For prime ideals $\mathfrak{p} \nmid p\mathcal{O}_K$, we have $\mathcal{A}_{H,\mathfrak{p}} = \mathcal{M}_{\mathfrak{p}}$ and $\mathcal{O}_{L,\mathfrak{p}}$ is free over $\mathcal{A}_{H,\mathfrak{p}}$.

In our case
$$\mathcal{M}_{\mathfrak{p}} = \mathcal{O}_{\mathcal{K},\mathfrak{p}}\langle (e_{\mathbf{i}}) \rangle$$
.

Proposition

For prime ideals $\mathfrak{p}|p\mathcal{O}_{K}$, $\mathcal{O}_{L,\mathfrak{p}}$ is a free $\mathcal{A}_{H,\mathfrak{p}}$ -module (of rank one).

For prime ideals $\mathfrak{p}|p\mathcal{O}_K$ we determine the associated order and prove freeness "all in one". We will sketch the proof of freeness for prime ideals $\mathfrak{p}|p\mathcal{O}_K$ on the following slide.

ヘロト 人間ト 人間ト 人間ト

Determining the associated order

- We take the element $x_{p-1} = \frac{(1+\alpha_1+...+\alpha_1^{p-1})...(1+\alpha_r+...+\alpha_r^{p-1})}{p^r}$ as a "candidate generator"
- Note that we choose this particular element because it has the largest power of *p* in the denominator
- We determine elements a_i ∈ H_p such that a_i.x_{p-1} = x_i for all basis elements x_i
- Note that these elements exist because our "candidate generator" generates L_p as an H_p-module
- To determine whether a_i ∈ A_{H,p} we need to evaluate a_i.x_j for all basis elements x_j
- $a_i \in \mathcal{A}_{H,\mathfrak{p}}$ iff $a_i.x_j \in \mathcal{O}_{L,\mathfrak{p}}$ for all basis elements x_j
- It turns out that the elements a; are actually in the associated order as claimed
- Hence the elements a_i form an $\mathcal{O}_{K,p}$ -basis of the associated order and $\mathcal{O}_{L,p} = \mathcal{A}_{H,p} \cdot x_{p-1}$

Using idèlic theory to derive conditions for global freeness

The main result that we will use to derive conditions for global freeness is the following.

Theorem (Bley and Johnston, 2008)

 \mathcal{O}_L is a free \mathcal{A}_H -module iff

• \mathcal{O}_L is a locally free \mathcal{A}_H -module

• \mathcal{MO}_L is a free \mathcal{M} -module with a generator $x \in \mathcal{O}_L$.

We have shown that \mathcal{O}_L is a *locally* free \mathcal{A}_H -module.

To determine when \mathcal{MO}_L is free \mathcal{M} -module with a generator $x \in \mathcal{O}_L$, we use the idèlic description of $Cl(\mathcal{M})$ (the locally free class group of \mathcal{M}).

- \mathcal{MO}_L is a free \mathcal{M} -module iff \mathcal{MO}_L has trivial class in $\mathcal{CI}(\mathcal{M})$
- The isomorphism $H \cong K^{p^r}$ gives rise to an isomorphism of class groups

•
$$Cl(\mathcal{M}) \cong \frac{\mathbb{J}(H)}{H^{\times}\mathbb{U}(\mathcal{M})} \cong Cl(\mathcal{O}_{\mathcal{K}})^{p'}$$

Using idèlic theory to derive conditions for global freeness

 \bullet The class of \mathcal{MO}_L corresponds to the tuple (\mathcal{B}_i) where

$$\mathcal{B}_{\boldsymbol{i}} = \prod_{\mathfrak{p}} \mathfrak{p}^{\lfloor rac{v_{\mathfrak{p}}(\boldsymbol{a}^{\boldsymbol{i}})}{p}
floor}$$

MO_L is a free *M*-module with a generator *x* ∈ *O_L* iff the ideals *B_i* are principal with generators *x_i* such that ∑^{p-1}_{i=0} <u>aⁱ</u> ≡ 0 (mod p^rO_L)
 Our conclusion is the following.

Theorem

 \mathcal{O}_L is a free \mathcal{A}_H -module iff there exist $\alpha_1, ..., \alpha_r \in \mathcal{O}_L$ such that

•
$$L = K(\alpha_1, ..., \alpha_r)$$

•
$$a_i := \alpha_i^p \in \mathcal{O}_K$$
 for all $1 \le i \le r$

• The ideals \mathcal{B}_{i} as defined above are principal with generators x_{i} such that $\sum_{i} \frac{\alpha^{i}}{x_{i}} \equiv 0 \pmod{p^{r} \mathcal{O}_{L}}$

Furthermore, in this case the element $\frac{1}{p^r}\sum_{i}\frac{\alpha^i}{x_i}$ is a free generator of \mathcal{O}_L as an \mathcal{A}_H -module

Further work

Mix primes

• i.e. study extensions of the form $L = K(\alpha, \beta)$ where α^{p} , $\beta^{q} \in K$

- Single p^r root
 - i.e. study extensions of the form $L = K(\alpha)$ where $\alpha^{p'} \in K$

• Work towards a complete analogue of the Del Corso and Rossi result

15/16

Thank you for your attention.

イロト イヨト イヨト イヨト